Solid-State NMR Structural Studies of Proteins Using Paramagnetic Probes

Christopher Jaroniec
Department of Chemistry & Biochemistry
The Ohio State University
Protein Structure by MAS Solid-State NMR

\[D_{IS} \propto \gamma_I \gamma_S / r_{IS}^3 \]

\(\alpha \)-spectrin SH3 domain
(~300 \(^{13}\)C-\(^{13}\)C restraints)

M.H. Levitt, “Spin Dynamics”

Oschkinat et al., *Nature* 2002

- Conventional methods rely on measurements of \(^{13}\)C-\(^{13}\)C, \(^{13}\)C-\(^{15}\)N
 and \(^1\)H-\(^1\)H dipolar couplings via 2D or 3D correlation spectra
Protein Structure by MAS Solid-State NMR

\[D_{IS} \propto \gamma_I \gamma_S / r_{IS}^3 \]

\(\alpha \)-spectrin SH3 domain
(\(\sim 300 \) \(^{13}\)C-\(^{13}\)C restraints)

M.H. Levitt, “Spin Dynamics”

Oschkinat et al., *Nature* 2002

- Conventional methods rely on measurements of \(^{13}\)C-\(^{13}\)C, \(^{13}\)C-\(^{15}\)N and \(^1\)H-\(^1\)H dipolar couplings via 2D or 3D correlation spectra
Protein Structure by MAS Solid-State NMR

HET-s Prion Fibrils
Meier et al.
Science 2008

Anabaena Sensory Rhodopsin
Ladizhansky et al.
Nature Methods 2013

Type-III Secretion System Needle
Lange et al.
Nature 2012

• High-resolution structural and dynamic analysis possible for proteins up to ~300 aa – insights into function and mechanism
Long-Range Restraints Are Critical

- **Unambiguous** $^{13}\text{C}-^{13}\text{C}/^{13}\text{C}-^{15}\text{N}$ restraints >5-6 Å are often limited:

 small coupling magnitudes, low S/N, multispin effects

- Can be extended to ~8-10 Å using $^{1}\text{H}-^{1}\text{H}$ couplings with fast MAS:
 Reif, Zilm, Rienstra, Meier, Pintacuda, and others
Solid-State NMR of Proteins Modified with Paramagnetic Tags

- Intentionally introduce paramagnetic centers at specific sites as long-range structural probes due to large e^*-n couplings

\[\left| \frac{\gamma_e}{\gamma_H} \right| \approx 660 \]
Paramagnetic Effects in MAS Solid-State NMR

- **Contact shift**: e\(^{-}\)-density at nucleus, negligible for e\(^{-}\)-n distances > \(~5\ \AA\)
- **Pseudocontact Shift (PCS)**: centers with large electron g-anisotropy (Co\(^{2+}\), lanthanides)
- **Paramagnetic Relaxation Enhancement (PRE)**: centers with small g-anisotropy (NO, Cu\(^{2+}\))
Nuclear Paramagnetic Relaxation

\[\tau_c^{-1} = T_{1e}^{-1} + \tau_r^{-1} + \tau_M^{-1} \approx T_{1e}^{-1} \]

- Fluctuation of direction/intensity of dipolar field generated by electron spin at nucleus leads to enhanced nuclear relaxation
Nuclear Paramagnetic Relaxation

\[\Gamma_1 \approx \frac{2C}{r_{en}^6} \left(\frac{3T_{1e}}{1 + \omega_n^2 T_{1e}^2} + \frac{7T_{1e}}{1 + \omega_e^2 T_{1e}^2} \right) \]

\[C = \frac{1}{15} \left(\frac{\mu_0}{4\pi} \right)^2 \gamma_n^2 g_e^2 \beta_e^2 S(S + 1) \]

\[\Gamma_2 \approx \Gamma_1 \rho \approx \frac{C}{r_{en}^6} \left(4T_{1e} + \frac{3T_{1e}}{1 + \omega_n^2 T_{1e}^2} + \frac{13T_{1e}}{1 + \omega_e^2 T_{1e}^2} \right) \]
Nuclear Paramagnetic Relaxation

- PRE effects can be large for nuclei ~20 Å from paramagnetic center
- Effects can be modulated by using different paramagnetic centers
- Transverse PRE directly proportional to T_{1e} (i.e., slowest relaxing centers cause largest PREs)
- Longitudinal PRE largest when $1/T_{1e}$ ~ nuclear Larmor frequency (in angular units)
Typical T_{1e} values @ RT are in the range 10^{-13} to 10^{-7} s

T_{1e} values approximately the same for proteins in solution and hydrated proteins in solid phase @ RT

Spin Labeling of Proteins

- R1/R1’ side-chains placed at solvent-exposed aa K28 or T53
- Protein fold not affected
- “Diluted” in microcrystals with unlabeled/diamagnetic protein
Paramagnetic Protein Samples for SSNMR

$^{12}\text{C},^{14}\text{N} \text{ protein, } R1'$

$^{13}\text{C},^{15}\text{N} \text{ protein, } R1$

3:1

Microdialysis (MPD:isopropanol)

Protein microcrystals

Pauli et al., *JMR* (2000)
McDermott et al., *JBNMR* (2000)
Franks et al., *JACS* (2005)
SSNMR of Spin Labeled GB1-T53C Mutant

Diamagnetic

^{15}N (ppm)

^{13}C (ppm)

SSNMR of Spin Labeled GB1-T53C Mutant

Diamagnetic

Spin-Labeled

SSNMR of Spin Labeled GB1-T53C Mutant

Diamagnetic

Spin-Labeled

SSNMR of Spin Labeled GB1-T53C Mutant

- Signals from nuclei within ~10-12 Å of spin label are suppressed by large transverse PRE effects (mainly during initial 1H-15N CP)

Qualitative Long-Range Distance Restraints

Solution vs. Solid-State PRE

- Similar overall 1HN PRE profiles during CP/INEPT (main effect)
- PRE more pronounced in the solid state (for GB1 $\tau_{c,\text{solid}} \gg \tau_{c,\text{solution}}$)
Initial SSNMR Studies of $^{13}C,^{15}N$-Metalloproteins

Pintacuda, Giraud, Pierattelli, Bockmann, Bertini, Emsley, Angew. Chem. Int. Ed. 2007, 46, 1079

Biomolecular Solid-State NMR

Solid-State NMR Spectroscopy of a Paramagnetic Protein: Assignment and Study of Human Dimeric Oxidized CuII–ZnII Superoxide Dismutase (SOD)**

Guido Pintacuda, Nicolas Giraud, Roberta Pierattelli, Anja Böckmann, Ivano Bertini, and Lyndon Emsley*

Paramagnetic Ions Provide Structural Restraints in Solid-State NMR of Proteins

Stéphane Balayssac,† Ivano Bertini,*†,‡ Moreno Lelli,† Claudio Luchinat,†,‡ and Massimiliano Maletta†,‡

Balayssac, Bertini, Lelli, Luchinat, Maletta, JACS 2007, 129, 2218
PRE Tuning by Other Paramagnetic Centers

Ermacora et al., *PNAS* (1992)

<table>
<thead>
<tr>
<th>Species</th>
<th>logK EDTA-M</th>
<th>S</th>
<th>T_{1e} (ns)</th>
<th>$\Gamma_2^{NO}/\Gamma_2^{M}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn$^{2+}$</td>
<td>16.68</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>18.86</td>
<td>1/2</td>
<td>~2</td>
<td>~50</td>
</tr>
<tr>
<td>Mn$^{2+}$</td>
<td>13.95</td>
<td>5/2</td>
<td>~10</td>
<td>~0.85</td>
</tr>
<tr>
<td>nitroxide</td>
<td>-</td>
<td>1/2</td>
<td>~100</td>
<td>1</td>
</tr>
</tbody>
</table>

- Tune longitudinal and transverse PREs by using paramagnetic centers with different electronic properties
Quantitative Restraints via EDTA-Cu$^{2+}$ Tags & R$_1$ PREs

Nadaud, Helmus, Kall & Jaroniec, J. Am. Chem. Soc. 2009, 131, 8108
Determination of Protein Fold

Ishita Sengupta
Philippe Nadaud
Rapid Acquisition of Relaxation Data

- GB1-28EDTA-Cu$^{2+}$
- 2D 15N-13CO-S3E @ 40 kHz MAS

• 1 mg (~150 nmol) 13C,15N-GB1
• Experiment time: 7 min

- 40 kHz MAS, low-power RF & short recycle delays with Cu(II)-tags:
 full trajectories in ~12-48 hours vs. ~5-7 days with ~10 kHz MAS & 1 µmol protein

15N Longitudinal PREs for GB1-EDTA-Cu$^{2+}$ Mutants

- >200 15N PREs (4-5 per aa) for set of 6 Cu$^{2+}$/Zn$^{2+}$ GB1 mutants in ~2-3 weeks
Quantitative Long-Range Distance Restraints

\[\Gamma_1^N = R_1^N (\text{Cu}^{2+}) - R_1^N (\text{Zn}^{2+}) \]

- Quantitative 15N-Cu$^{2+}$ distances in ~10-20 Å range accessible
Comparison of Experimental & Predicted PREs

- Backbone torsion angles fixed to GB1 values
- Conformation of EDTA-Cu\(^{2+}\) refined subject to PRE restraints
- Good agreement overall for PREs > \(~0.1\) s\(^{-1}\)
Effect of Intermolecular 15N-Cu$^{2+}$ Couplings on Longitudinal 15N PRE Measurements

- ~25%
- ~15%
- ~10%

• ~15-20% dilution of 13C,15N-protein appears optimal

• Several elevated PREs observed even at ~10% dilution: Cu^{2+} binding to endogenous surface Asp/Glu sites

Nadaud, Sengupta, Helmus & Jaroniec, *J. Biomol. NMR* 2011, 51, 293
Observation of Cu$^{2+}$ Sites by Solution NMR

- For super-stoichiometric [Cu$^{2+}$]/[protein] ratios the Cu$^{2+}$ ions bind to surface Asp and Glu side-chains

Nadaud, Sengupta, Helmus & Jaroniec, J. Biomol. NMR 2011, 51, 293
Refinement with X-ray Data and PREs

No PREs

• Torsions for helix & strands fixed to X-ray values, loops randomized

Collaboration with Charles Schwieeters
Refinement with X-ray Data and PREs

No PREs with ~230 PREs

- Torsions for helix & strands fixed to X-ray values, loops randomized

Collaboration with Charles Schwieters
Refinement with TALOS+ and PREs

- De novo calculation gives correct global fold with 1.8 Å bb RMSD vs. X-ray

1H Detection: 2H, 13C, 15N-GB1 @ 60+ kHz MAS

0.35 mg (~50 nmol) DCN-GB1
800 MHz
~2 min

3D CONH: ~10 min

Relative Intensity (a.u.)

- Full relaxation trajectories:
 ~3 hours via 2D’s
 ~14 hours via 3D’s

Dwaipayan Mukhopadhyay

• Quantitative 1H-$^{2+}$ distances can be measured on protonated background

Direct Estimation of Electron T_1 From PRE Data

\[
\frac{\Gamma_2^H}{\Gamma_1^N} \approx \frac{\gamma_H^2}{2\gamma_N^2} \left(\frac{4T_1e + \frac{3T_1e}{1 + \omega_H^2 T_1e^2} + }{1 + \omega_H^2 T_1e^2} \right) \left(\frac{\frac{3T_1e}{1 + \omega_N^2 T_1e^2} + }{7T_1e} \right)
\]

Average for 14 residues with largest PREs ($\Gamma_1^N > 0.1 \text{ s}^{-1}$)

$T_{1e} \approx 2.5 \text{ ns}$
(range 1.8 – 3.1 ns)

- Good agreement with T_{1e}’s determined for several Cu$^{2+}$ metalloproteins in solution at ambient temp (Banci et al, Mag Res Rev 1986)

$T_{1e}: 1.8$-$5.7 \text{ ns (avg. 2.8 ns)}$

Oligomeric State of Membrane-Bound 7-Helix Sensory Rhodopsin from PREs

Wang, Munro, Kim, Jung, Brown & Ladizhansky, JACS 2012, 134, 16995
PrP23-144 Amyloid Strains and Species Barriers

Jones & Surewicz, Cell 2005, 121, 63

- Ordered ~30-residue C-terminal parallel-in-register amyloid β-core

Helmus et al. PNAS 2008, 105, 6284; JACS 2010, 132, 2393; JACS 2011, 133, 13934; Jones et al. JBC 2011, 286, 42777
13C-13C \& 13C-15N Distances in huPrP23-144 Fibrils

- ~70 13C-13C and 13C-15N distances >3 Å
- Assignments and structural restraints facilitated by use of specifically methyl labeled samples ($A^\beta_\gamma^2L^\delta_2V^\gamma_2 \& M^\varepsilon_1^\delta_1$)

Theint Theint
SSNMR of Spin Labeled huPrP23-144 Fibrils

- Signals from nuclei within ~10-12 Å of spin label effectively attenuated
Structural Model of huPrP23-144 Amyloid Core

- 176 total restraints (71 13C-13C/15N distances >3 Å; 59 PREs; 46 bb torsions)
Higher Order Fibril Architecture

\[\eta = \frac{0.48 \cdot MPL}{MW} \approx 1.99 \]

Intermolecular PREs

\(^{15}N \) Longitudinal PRE (s⁻¹)

Counts

Mass / Length (kDa/nm)

100 nm

\(~30 \text{ nm}\)

\(~6 \text{ nm}\)

Horizontal Distance (nm)
Model of huPrP23-144 Fibril
Solvent Interfaces via 15N PREs with Cu$^{2+}$-EDTA

Aucoin et al., in preparation
Compact High-Affinity Cu^{2+} Binding Tags

Synthesis based on: Lacerda et al., *Polyhedron* (2007)

Ishita Sengupta Min Gao Rajith Arachchige
PRE Measurements: 28TETAC-Cu$^{2+}$ GB1

- Signals from nuclei within ~10 Å of Cu$^{2+}$ center strongly attenuated due to transverse PREs

Sengupta et al. J. Biomol. NMR 2015, 61, 1
PCS Measurements in Co$^{2+}$ Tagged GB1

$$\delta_{PCS} = \frac{1}{12\pi r_{en}^3} \left[\Delta \chi_{ax} \left(3 \cos^2 \theta - 1 \right) + \frac{3}{2} \Delta \chi_{rh} \sin^2 \theta \cos 2\phi \right]$$

Similar work on lanthanide binding bidentate tags: Ubbink et al.
Structure determination of a Co^{2+} metalloprotein aided by PCS restraints

Bertini, Bhaumik, De Paepe, Griffin, Lelli, Lewandowski, Luchinat JACS 2010, 132, 1032
Structure determination with PCS restraints from 4MMDPA-Co^{2+} proteins and CS-Rosetta

Li, Pilla, Yang et al. JACS 2013, 135, 8294
4MMDPA: Su, Otting et al. JACS 2008, 130, 10486
Summary

- Paramagnetic tags can be used as unique structural probes in MAS solid-state NMR with many potential applications to biological solids:
 - Quantitative long-range distance measurements
 - Protein fold determination
 - Probing intermolecular contacts
 - Spectral editing & sensitivity enhancement
 - Identification of ligand binding sites
 - …
Acknowledgments

Philippe Nadaud
Ishita Sengupta
Rajith Arachchige
Dwaipayan Mukhopadhyay
Min Gao
Justin Thomas
Jonathan Helmus
Theint Theint
Darryl Aucoin
Tara George
Zhe Qi
Yongjie Xia
Simon Pondaven

Witold Surewicz (CWRU)
Charles Schwieeters (NIH)